Create vector embeddings for text to power semantic search and similarity
e5-large-v2, bge-base-en, jina-embeddings-v2float, base64listobject: Always embeddingindex: Position in the input arrayembedding: Array of floats representing the vectorprompt_tokens: Tokens in the inputtotal_tokens: Same as prompt_tokens for embeddings| Model | Dimensions | Max Tokens | Price |
|---|---|---|---|
e5-large-v2 | 1024 | 512 | $0.01/M |
bge-base-en | 768 | 512 | $0.01/M |
jina-embeddings-v2 | 768 | 8192 | $0.02/M |
nomic-embed-text | 768 | 8192 | $0.01/M |
gte-large | 1024 | 512 | $0.01/M |
Semantic Search
RAG (Retrieval-Augmented Generation)
Clustering
Deduplication
400 Bad Request - Too Many Inputs
400 Bad Request - Input Too Long